linux内核原代码boot.s部分的注释

/ns/wz/sys/data/20020809010905.htm

linux内核原代码boot.s部分的注释


本文出自:http://os.silversand.net
  boot.s
  |
  | boot.s is loaded at 0x7c00 by the bios-startup routines, and moves itself
  | out of the way to address 0x90000, and jumps there.
  |
  | It then loads the system at 0x10000, using BIOS interrupts. Thereafter
  | it disables all interrupts, moves the system down to 0x0000, changes
  | to protected mode, and calls the start of system. System then must
  | RE-initialize the protected mode in it's own tables, and enable
  | interrupts as needed.
  |
  | NOTE! currently system is at most 8*65536 bytes long. This should be no
  | problem, even in the future. I want to keep it simple. This 512 kB
  | kernel size should be enough - in fact more would mean we'd have to move
  | not just these start-up routines, but also do something about the cache-
  | memory (block IO devices). The area left over in the lower 640 kB is meant
  | for these. No other memory is assumed to be "physical", ie all memory
  | over 1Mb is demand-paging. All addresses under 1Mb are guaranteed to match
  | their physical addresses.
  |
  | NOTE1 abouve is no longer valid in it's entirety. cache-memory is allocated
  | above the 1Mb mark as well as below. Otherwise it is mainly correct.
  |
  | NOTE 2! The boot disk type must be set at compile-time, by setting
  | the following equ. Having the boot-up procedure hunt for the right
  | disk type is severe brain-damage.
  | The loader has been made as simple as possible (had to, to get it
  | in 512 bytes with the code to move to protected mode), and continuos
  | read errors will result in a unbreakable loop. Reboot by hand. It
  | loads pretty fast by getting whole sectors at a time whenever possible.
  | 1.44Mb disks: sectors = 18
  | 1.2Mb disks:
  | sectors = 15
  | 720kB disks:
  | sectors = 9
  .globl begtext, begdata, begbss, endtext, enddata, endbss
  .text
  begtext:
  .data
  begdata:
  .bss
  begbss:
  .text

BOOTSEG = 0x07c0
  INITSEG = 0x9000
  SYSSEG = 0x1000 | system loaded at 0x10000 (65536).
  ENDSEG = SYSSEG + SYSSIZE | SYSSIZE在Makefile中定义的 ^_^

entry start
  start:
   mov ax,#BOOTSEG | 现在应仍处在REAL MODE下.
   mov ds,ax | 移动自身从BOOTSEG:0000到INITSEG:0000
   mov ax,#INITSEG | 共512字节.
   mov es,ax | 那么BOOT.S处在0x90000-0x90200.
   mov cx,#256
   sub si,si
   sub di,di
   rep
   movw
   jmpi go,INITSEG
  go: mov ax,cs
   mov ds,ax | 将DS,ES,SS均设为0x9000,所有数据都以
   mov es,ax | 0x9000为段偏移.
   mov ss,ax | 堆栈偏移0x9000
   mov sp,#0x400 | 栈顶指针0x9000:0x0400,堆栈空间512bytes??
   mov ah,#0x03 | read cursor pos
   xor bh,bh
   int 0x10
   mov cx,#24
   mov bx,#0x0007 | page 0, attribute 7 (normal)
   mov bp,#msg1 | 显示Loading System ...
   mov ax,#0x1301 | write string, move cursor
   int 0x10

| ok, we've written the message, now
  | we want to load the system (at 0x10000)

mov ax,#SYSSEG
   mov es,ax | segment of 0x010000
   call read_it | 读内核到0x10000
   call kill_motor | 杀了软驱!? ^_^

| if the read went well we get current cursor position ans save it for
  | posterity.

mov ah,#0x03 | read cursor pos
   xor bh,bh
   int 0x10 | save it in known place, con_init fetches
   mov [510],dx | it from 0x90510.

| now we want to move to protected mode ...

cli | no interrupts allowed !

| first we move the system to it's rightful place

mov ax,#0x0000
   cld | 'direction'=0, movs moves forward
  do_move:
   mov es,ax | destination segment
   add ax,#0x1000
   cmp ax,#0x9000
   jz end_move
   mov ds,ax | source segment
   sub di,di | 置零,地址为0x1000:0000
   sub si,si | 置零,地址为0x9000:0000
   mov cx,#0x8000 | cx的作用是计数器
   rep
   movsw
   j do_move | 将位于低端0x1000:0000的内核移到内存
   | 高端0x9000:0000,覆盖了boot.S !?

| then we load the segment descriptors

end_move:

mov ax,cs | right, forgot this at first. didn't work :-)
   mov ds,ax
   lidt idt_48 | idt_48和gdt_48都是一个3个word长的数据结构
   lgdt gdt_48 | 第一个字说明(Global || Interrupt) Descriptor
   | Table有多长,因为每个Table是四个字长,所以
   | 可以得出整个DescriptorTable的entries.(见下)
   | 后两个字指出DT的具体位置.
   | idt_48是0,0,0;应表示没有中断描述符entries.
   | gdt_48有256个入口,第一个是个空入口,然后
   | 定义了一个code段和一个data段.基址都是
   | 0x00000000, !?那里是什么东西???
   | *** 0x00000000 != 0x0000:0000 ***

| that was painless, now we enable A20

call empty_8042
   mov al,#0xD1 | command write
   out #0x64,al
   call empty_8042
   mov al,#0xDF | A20 on
   out #0x60,al
   call empty_8042

| well, that went ok, I hope. Now we have to reprogram the interrupts :-(
  | we put them right after the intel-reserved hardware interrupts, at
  | int 0x20-0x2F. There they won't mess up anything. Sadly IBM really
  | messed this up with the original PC, and they haven't been able to
  | rectify it afterwards. Thus the bios puts interrupts at 0x08-0x0f,
  | which is used for the internal hardware interrupts as well. We just
  | have to reprogram the 8259's, and it isn't fun.
  | 初始化中断处理器8259i
  | 初始化顺序为: 1. 向主8259A写ICW1, 0x20
  | 2. 向第二块8259A写ICW1, 0xA0
  | 3. 向主8259A写ICW2, 0x21
  | 4. 向第二块8259A写ICW2, 0xA1
  | 5. 如果ICW1指示有级联中断处理器,则初始化Master&Slave
  | (在下例中只有IR2有级联8259A), 0x21, 0xA1
  | 6. 向两块8259写ICW4,指定工作模式.
  | 输入了适当的初始化命令之后, 8259已经准备好接收中断请求.
  | 现在向他输入工作
  | 命令字以规定其工作方式. 8259A共有三个工作命令字,但下例中只用过OCW1.
  | OCW1将所有的中断都屏蔽掉, OCW2&OCW3也就没什么意义了.
  | ** ICW stands for Initialization Command Word;
  | OCW for Operation Command Word.
  1. mov al,#0x11
   out #0x20,al
   .word 0x00eb,0x00eb | jmp $+2, jmp $+2
  2. out #0xA0,al | and to 8259A-2
   .word 0x00eb,0x00eb
  3. mov al,#0x20 | 向主8259A写入ICW2.
   out #0x21,al | 硬件中断入口地址0x20, 并由ICW1

| 得知中断向量长度 = 8 bytes.
   .word 0x00eb,0x00eb
  4. mov al,#0x28 | start of hardware int's 2 (0x28)
   out #0xA1,al | 第二块8259A的中断入口是0x28.
   .word 0x00eb,0x00eb
  5. mov al,#0x04 | 8259-1 is master
   out #0x21,al | Interrupt Request 2有级联处理.

.word 0x00eb,0x00eb
   mov al,#0x02 | 8259-2 is slave
   out #0xA1,al | 于上面对应,告诉大家我就是IR2对应
   | 级联处理器.
   .word 0x00eb,0x00eb
  6. mov al,#0x01 | 8086 mode for both
   out #0x21,al
   .word 0x00eb,0x00eb
   out #0xA1,al

.word 0x00eb,0x00eb
   mov al,#0xFF | mask off all interrupts for now
   out #0x21,al

.word 0x00eb,0x00eb
   out #0xA1,al

| well, that certainly wasn't fun :-(. Hopefully it works, and we don't
  | need no steenking BIOS anyway (except for the initial loading :-).
  | The BIOS-routine wants lots of unnecessary data, and it's less
  | "interesting" anyway. This is how REAL programmers do it.
  |
  | Well, now's the time to actually move into protected mode. To make
  | things as simple as possible, we do no register set-up or anything,
  | we let the gnu-compiled 32-bit programs do that. We just jump to
  | absolute address 0x00000, in 32-bit protected mode.

mov ax,#0x0001 | protected mode (PE) bit
   lmsw ax | This is it!
   jmpi 0,8 | jmp offset 0 of segment 8 (cs)

| This routine checks that the keyboard command queue is empty
  | No timeout is used - if this hangs there is something wrong with
  | the machine, and we probably couldn't proceed anyway.
  empty_8042:
   .word 0x00eb,0x00eb
   in al,#0x64 | 8042 status port
   test al,#2 | is input buffer full?
   jnz empty_8042 | yes - loop
   ret

| This routine loads the system at address 0x10000, making sure
  | no 64kB boundaries are crossed. We try to load it as fast as
  | possible, loading whole tracks whenever we can.
  |
  | in: es - starting address segment (normally 0x1000)
  |
  | This routine has to be recompiled to fit another drive type,
  | just change the "sectors" variable at the start of the file
  | (originally 18, for a 1.44Mb drive)
  |
  sread: .word 1 | sectors read of current track
  head: .word 0 | current head
  track: .word 0 | current track
  read_it:
   mov ax,es | ES当前应0x1000
   test ax,#0x0fff | 必需确保ES处在64KB段边界上,即0x?000:XXXX.
   | 要不你就会收到一个"DMA..."什么什么的ERR.
  die: jne die | es must be at 64kB boundary
   xor bx,bx | bx is starting address within segment
  rp_read: | **** 循环入口处 ****
   mov ax,es
   cmp ax,#ENDSEG | have we loaded all yet?
   jb ok1_read
   ret
  ok1_read:
   mov ax,#sectors | 1.44M, sectors=18,linux的后续版本
   | 中已改成由操作系统来探测sectors的值.
   sub ax,sread | AX内记载需要读的扇区数,初始sread为1,
   | 即跳过第一道的第一扇区(BOOT区)
   mov cx,ax |
   shl cx,#9 | CX算出需要读出的扇区的字节数, ax*512.
   add cx,bx | BX是当前段内偏移.
   | 下面连续的两个转移指令开始还真让人莫名其妙.
   jnc ok2_read | 这里先检查当前段内的空间够不够装ax个扇区
   | cx算出字节数,加上当前偏移试试,够了的话,就
   | 跳到ok2_read去读吧!
   je ok2_read | 这么巧的事也有,刚刚够! 读!
   | 如果到了这里就确认溢出了,看下面的:
   xor ax,ax | 这段代码我觉得很精巧.
   sub ax,bx | 它主要目的就是算出如果当前段内空间不够的话,
   shr ax,#9 | 那么反算出剩余空间最多能装多少个扇区,那么
   | 就读出多少个.(Hint,段内空间是扇区的整数倍)

ok2_read:
   call read_track | 读取当前磁道.
   mov cx,ax ----| | (别忙,这里暂时不关cx什么事!)
   add ax,sread | | AX是这次读出的扇区数, sread是该磁道已
   | | 读出的扇区,相加更新AX的值.
   cmp ax,#sectors | | 该磁道所有的扇区都读出了吗?
   jne ok3_read | | 尚未,还不能移到下个磁道!
   mov ax,#1 |
   sub ax,head | | head对应软盘来说只能是0,1
   jne ok4_read | | 0,1 head都读过了才准往下走!
   inc track | | 终于可以读下个磁道了,真累!
  ok4_read: |
   mov head,ax |
   xor ax,ax |
  ok3_read: |
   mov sread,ax | | 如果是由于还没读完所有的磁道?
   | | 那么ax记载当前磁道已读出的扇区,更新sread.
   | | 如果已读完18个扇区,ax被上一行代码置零.
   shl cx,#9 >,周德明.后来我发现Minix的那本
  * 书里也有一点东西,还没来的及看.
  * 另外多谢你提供的 across reference building tool,我还没用熟,能简单
  * 介绍介绍吗? ^_^
  * 杜晓明 98.11.17
  **/
  @@ 1,你搞错了,boot在读完system到0x10000之后,又将它这么一移到0x0。:-)
  @@ 2.绝对地址0x00000里面 system.实模式中断不能再用了
  @@ !)在整个初始化过程完毕后,系统jump: jmpi 0,8 这是个长跳转 cs=8 eip=0
  @@ cs=8不是实模式的段,而是gdt表中第一 (0开始),就是你定义的初始的两个GDT
  @@  中的第一项,所以,现在系统跳到绝对0,即head.s的startup
  @@ 3.用lxr的across reference building tool先解开后,基本上按INSTLL说明
  @@   make install
  @@ edit $(安装目录)/http/lxr.conf
  @@ baseurl 改为你的url
  @@ 我是这样设的  http://192.168.1.3/lxr/
  @@ 同一目录下设.htaccess INSTALL有
  @@      配置 httpd server
  @@ httpd.conf 加一行  Alias /lxr $(安装目录)/http/
  @@ cd $(安装目录)/source 产生标识符库 ../bin/genxref $(kernel source目录)
  @@ kernel source: /linux/0.01/....
  @@ /0.10/...
  @@ 你还可用global http://zaphod.ethz.ch/linux/
  @@ 我装过,可是最后装好后没有搜索,不然应该会更好用。?
  @@ 4.内核调试我用过gdbstub,但是我发现调试好象的是gdbstub.c程序,而不是内核,只
  @@ 看到gdbstub.c的原代码,没有内核的原代码,或许有个步骤我没做导致如此.